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Entropy production and excess entropy in a nonequilibrium steady-state of single macromolecules
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Based on a recently developed formalism for mesoscopic stochastic dynamics of single macromolecules,
such as motor proteins, in aqueous solution, we demonstrate mathematically the principle of the nonequilib-
rium thermodynamics originated by the Brussels group. The key concepts of excess entropy and excess entropy
production, and their mathematical properties as well as physical interpretations, are discussed. The newly
developed stochastic macromolecular mechanics is consistent with the general theory of nonequilibrium ther-
modynamics far from equilibrium, and more importantly, it bridges the abstract theory with the current ex-
perimental and modeling work on molecular motors and other biological systems in nonequilibrium steady

state.
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[. INTRODUCTION suggests an alternative perspective for transient kinetics ap-
proaching to NESS. In combination with the experimental
In a previous papefl], we have proposed an axiomatic development in molecular motors and nanofabrication, we
mesoscopic statistical thermodynamic formalism for singlebelieve the present theory will further deepen our under-
macromolecules in ambient fluid at constant temperaturestanding of nonequilibrium statistical mechanics and thermo-
Following the standard polymer theofg], a single macro- dynamics.
molecule is represented by a setMf‘atoms” whose con- Stochastic macromolecular mechanics is based on the
figuration, X is described by a point in aNB-dimensional overdamped Brownian dynamics of macromolecules in
space. The dynamics of the atoms in the molecule is assumedjueous solution, and defines work, entropy, and thermody-
to be overdamped in the fluid with hydrodynamic interac-namic force
tions represented by a positive maték the Oseen tensor.

The force, both internal and external, is assumed tB([. EdX=F(Xydt+I'dB;. (conformational dynamigs
With this setting, a complete thermodynamics is developed 1)
based on the stochastic dynamics of the macromole¢ule

in terms of its Smoluchowski equation. The theory makes dW;=F(Xp)odXy, (work), (2

connections with the classic work of Clausius, Gibbs, and

Onsager, and is applicable to both systems with and without

detailed balance. Hence a thermodynamics for a macromol- S= _ka P(x,)InP(x,t)dx (entropy, ()]
ecule such as motor proteif3] in nonequilibrium steady-

state(NESS emerges. We suggested that the mathematical IT=F(x)—ksTVP(x,t) (thermodynamic force (4)
formalism provides a theoretical foundation for the future

nanotechnology in which energy transduction and heat dissiy, \yhich T'dB, characterizes the random collision between

pation will be the essential problems, analogous to the clashe atoms and the fluid particle®(x,t), the probability den-
sic thermodynamics for macroscopic engines and machineg;yy, for X, =x at timet, is the solution to the Smoluchowski
In this paper, we use this explicit formalism we csiib-

. g equation
chastic macromolecular mechanig$| to explore the thorny
issues around the entrogiieal production rate in systems 9P
without detailed balance, particularly near a NESS, revisit EzV-(%AVP—Ele(x)P),

the principle of minimal entropyheaj production[5] as
well as the concept of excess entropy and thermodynamic T T i
stability introduced by the Brussels sch6]. The goal is to (A=ETT 5" '=2kgTE 7). ®)
show the consistency between the two theories. The present . ) )

paper provides the macroscopic thermodynamic theory Wit@ee[l] for more details. While the first law of thermodynam-

a sound molecular basis. It shows the formalism to be suffil€S is built into the theoryEq. 2 as the definition for heat
ciently comprehensive and can be used in analyzing man§nergy in NESSsimilar to Carathedory[7]), the important
current, sometime abstract, issues in nonequilibrium thermd€sults in[1] are(i) the introduction ofocal equilibriunt (ii)
dynamics far from equilibrium with rigorous mathematics @ Proof of equilibrium among local free energy.e.,
and clear physical pictures. Furthermore, our analysis clearl§ntropy-energy compensatjorand (iii) a derivation ofthe
distinguishes two different types of stabilities in a NESS, andtduation for entropy balancks,6,9)

das
T—=Te,—hy, 6
*Email address: gian@amath.washington.edu dt P ©)

1063-651X/2002/6&)/0211116)/$20.00 65021111-1 ©2002 The American Physical Society



HONG QIAN PHYSICAL REVIEW E 65 021111

wheree, andhy are entropy production and heat dissipation ) ) (6P)?
rates, respectively, with explicit formulas 6°5= —kB[fS J P(x) InP(x)dx = _ksj —ax
p=p*
1 (11)
ep=ff (AAV INP(x,t)—E "F(x))"E(2AV In P(x,t)
and -2V =
—EF(X)P(x,)dx, 7
P 5P)? oP\?
and —2ka PIn(P—*)dx=—ka (P—*)deroHP—*) }
(12

hd:f F(P(x,1)E ~1F(x)— SAVP(x,t))dx. (8)

wheresP=P—P*. Hence, one can show thatS (<0) is a

It is clear thate, in Eq. (7) is always positive, and it equals local Lyapunov functionnear a NESS

to zero if and only ifF,= —-VU(x), has a potential and the
probability distribution then is BoltzmannianP(x)
=7"te"YW/keT (7 being the partition function This is the d . K d [ (P— P*)Zd
second law of thermodynamics. In this paper, we are inter- o s=- BEJ p* X
ested inF without potential. It then can be mathematically

shown that the stationary solution to E¢$) and(5) is nec- _ ok { J' (i) I+ -V(i)dx
essarily a NESS with time irreversibility, ared>0 [10,11]. B * p*

Il. RELATIVE ENTROPY AND SECOND DIFFERENTIAL —ksT | P*|V i =1y i dx
B * | = *
OF ENTROPY P P
i i i i i P P
Equation(6) is the starting point of all phenomenological =2k§TJ p|v| — |=-1v| __||dx=0,
treatment on nonequilibrium thermodynamjd®,8,6,13,14 P P

Equations(1)—(4) augment this equation with a mesoscopic
picture of macromolecular Brownian motion. They also pro-
vide Eq.(6) with a mathematical foundation in terms of the
stochastic dynamics. Note that, and hy are d;S/dt and

where — V- J(x,t) =dP(x,x)/dt andJ=P(x,t)Z II(x,t).
In terms of J and II, Eq. (7) can be rewritten ase,

d.S/dt in [8,6]. We usee, (hy) instead of the traditional = (IMJI-Jdx.

notationS; (S,) for the entropy productiotheat dissipation

rate to emphasize that it is a soun@ink) term, not a time Ill. EXCESS ENTROPY PRODUCTION RATE

derivative. _ _
The uniqueness of the NESS solutioR* (x), to the By “excess entropy,” we simply mean the functional

Fokker-Planck equatiofs) without detailed balance can be 9iven in Eq.(11) [6]
demonstrated by introducing a well-known global Lyapunov

function discovered by Schip[15] [P(x,t)—P*(x)]2
YP]=—kg 5
P(X.1) P7(x)
\P[P(x,t)]szf P(x,t)In P (%) dx=0. 9
In parallel to the equation for entropy balance, one has an
As the Lyapunov function, its time derivatiy&6] equation for excess entropy balance
d\If_kfaPl(P)d d
dt —®) g N\ pr ) T 5 6°5=To%,~ 5hy (13
2 P =-1 P
=—kgT | P|VIn| |27 "VIn| ;| |dx<0 ) ) _
P P in which the excess entropy production rate
(10

It is an agonizing fact tha¥’, being such an important math- T52ep=j S2I1-J dx+2J SII- 83 dx+J IT- 523 dx.
ematical function, has not found a natural physical meaning.

Recently[17,1§, it has been established that for Eg). with (14

detailed balance} is in fact the Helmholtz free energy, also

known as exergy17]. The last term in Eq(14) equals zero sincd is a linear
Near a NESS, it is known tha¥ is equivalent to the function of P. The first term, however, is not zero but is on

second differential of entrop® with respect taP [6,9] the order ofo[ 5P)?]:
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f 521 J dx
=f [TI(P)—2II(P*) +II(2P* — P)]J dx
=f 2(H—H*)~de—J [TI(P)—TII(2P* —P)]J dx
=f 2(I—IT*)(J—J* )dx+kgT
Xf [VINP-V In(2P* —P)]Jdx
- dw d
= 2T +keT
xf[PIn P+ (2P* —P)In(2P* — P)]dx,
in which
d\P_ *\=—1 *
TH——f P(II-1IT*)E ~}(IT—I1*)dx
=—f (H—H*)-de+f P(IT-11*)E ~II* dx
=—f (IT-T1*) - (J—J*)dx—kgT

P P\
XJPTV|np7JdX

=—f (M—T11*) - (J— J* )dx.

Therefore,

5 d P
5ep=—k3a 4f Pin 3 dx—j PInP dx

—f (2P* —P)In(2P* — P)dx

B d (6P)? (5P)2)
——kBa[ P—*dX-I—O P }

Neglecting higher-order terms, th#S and 52ep are simply

related near a NESS

d
8%ep=— 6°S, (15

dt
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IV. THE MEANING OF STABILITY

Some remarks on the meaning of stability of a NESS is in
order. Within the framework of Brownian dynamics at con-
stant temperature in aqueous solution, the stability guaran-
teed by Eqgs(9) and(10) is the stochastic probability distri-
bution in NESS. When applying the same mathematical
theory for single macromolecules in aqueous solution to a
chemical reaction, sa)X+Y=2X, one considers the sto-
chastic chemical reaction in terms of a birth-and-death pro-
cess[14]. The birth-and-death process is a random walk in
the two-dimensionalXY plan with probability distribution
P(ny,ny,t), and its dynamics is mathematically equivalent
to a Brownian motion with nonconsta@ in Eq. (5) [19].

We shall call this mesoscopic stability.

There is another type of stability, which is associated with
the macroscopic behavior of the same chemical reaction. It
can be shown that for a system with large number of mol-
eculesX andY, the law of mass-action emerges and a mac-
roscopic chemical kinetics ari¢&9]. According to this pic-
ture, a wunimodal stationary distributionP* (ny,ny)
corresponds to fixed pointin the deterministic, macroscopic
chemical kinetics. However, the distribution can bifurcate:
the peak ofP* (ny,ny) becomes a minimum, and the high
probability is associated with a ring around the minimum
[19]. This stochastic picture corresponds to a macroscopic
limit cycle. In the macroscopic kinetics, the fixed point is
now unstable, and the chemical kinetics is oscillatory. How-
ever, the stochastic distributioR* (ny,ny) still enjoys its
asymptotic stability, as guaranteed by the Lyapunov func-
tions ¥ and 6°S [15]. This discussion on the meaning of
stability sheds some light on the qualm regarding the
Lyapunov functions?S [20—24. It is clear that the central
issue concerned by the pioneers is whetherdt®can also
be used as a Lyapunov function for the macroscopic, deter-
ministic kinetics. As pointed out ifi25], the mathematical
problem here is quite delicate. It involves the order in taking
infinite-time limit (stationarity and infinite-size(thermody-
namig limit. In the context of single macromolecules in
aqueous solution, the size of the molecular system is meso-
scopic; hence, the present theory does not involve the ther-
modynamic limit. Finally, it is interesting to point out that
while the stochastic system enjoys mesoscopic stability, the
underlying chemical reaction can be itself unstable. Such a
generic behavior of a nonequilibrium steady state is also
known as self-organizedasymptotically stable criticality
[26]. In a nonequilibrium steady state, the stationary is sus-
tained by circular balance rather than detailed balance, and
the size of the kinetic cycles ranges from small to as large as
the entire systeri27,10.

V. ENTROPY PRODUCTION RATE AS A LYAPUNOV
FUNCTION

the excess entropy production rate is the time derivative of
the excess entropy, which in turn is a local Lyapunov func
tion. Near a NESS§?S<0, and%e,=0. This is an explicit
demonstration of the theory on thermodynamic stability, in-
troduced by the Brussels grofif], of a single NESS mac-
romolecule in aqueous solution.

021111-3
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in which tempt to provide a basic idea of this approach. Whether such
. a perspective is beneficial, either experimentally or theoreti-

€p\* _ 3{—H*=‘1H* + 2FE - cally, remains to be seen.
6P T - - We argue that a system, without detailed balance and in

its transient process approaching to its uniqgue NESS, should
always be viewed in relative with respect to the NESS. More

For a system with detailed balance, a stochastic dynamic’cépec'f'(.:t?]"y’ all t?? ptr;]yskizlsqsuantltlfs ex;t)ressgddlﬁer- t
approaching to its equilibrium has the following properties;:enceWI respect to the counterparts enjoy a greater

. A . " .
thee, is always positive, and it equals zero when the systerﬁgatgzroigcilhse'rr';'?zla't(i:\'/tg' \:\r/]invyr:lclxéjsr;ﬁagizﬂf(;r,t()a;r% (:\)]
reaches the equilibrium. In Eq(16), the e,=0 and — J(x.t)—J* (X) to denote tharelati)\l/e flux Theﬁ

de,/5P* =0 at an equilibrium. Therefore, near the equilib- ’ ’

rium theey[P] is a convex function, ane, approaches to

zero monotonically without oscillation, an essential feature

of any relaxation to an equilibrium. This is related to Onsag- f
er’s reciprocal relation and the fact that the eigenvalue prob-
lem near an equilibrium is necessarily symmefrid]. In The
mathematical termg,=0 and in the linear neighborhood of
the equilibrium

+2kg TV - (2 H1%)1.

dv

relative  thermodynamic  force AIl=—KkgT
XVIN[P(xt)/P*(x)] has a potentialkgT In[P(x,t)/P*(X)]
which is the mesoscopicluctuating local entropy{1] in its
d relative form: AY = —kg In[P(x,t)/P*(x)]. The relative en-
g = —ZKBJ (V-3)2P tdx—(1/m) tropy then is the expectation of AY:¥=
—[P(X,)AY (x,t)dx.
We shall denote the quantity in E(L8), which equals to
XJ (JTEJ)(V-I)P2dx (17)  (T/2)é%, up to the second order, by'e,. This functional
is locally convex near a NESS

~—2kBJ (V-J3)2P~ldx=0. 5, ..
ﬁa e,=0, &9(5'e,)=0.

The second term on the right-hand side of ELy) is third
order in|J| which equals zero in an equilibrium. Therefore,
combining Egs.(16) and (17), entropy production rate is  VII. FROM MINIMAL HEAT DISSIPATION TO MINIMAL
also a local Lyapunov function for systems with detailed bal- ENTROPY PRODUCTION
ance

How doese, change with time in a stochastic dynamics
approaching to a NESS for systems without detailed ba
ance? This has been a nagging question in the history

nonequilibrium thermodynamid$]. In a NESS away from ) : o
an equilibrium, the stationary flu - J=0 butJ#0 and IT alize our formalism to some problems which involves two

#0. Hence, the second term on the right-hand side of Equﬁerent temperatur_es._ Un.der this condition, the entr_opy pro-
(17), ~O(V-J), is not smaller than the first terms, duction and hgat d|s§|pat|on rates are no Ion.ger simply re-
~0O[(V-J)?] near the NESS. Since there is no definiteneséat.e.d' Irllr? rewewdaru_clean m”;fr?a: pnncm:jle n NE?SJ
in the sign ofV -J near NESS, ¢/dt)e, can either be posi- [nmlma dea'E[_pro_ U’SIYIIEOSTGSWC Ot S "’.‘W)I ar(;_ m|n|m§1 Ifn; ‘
tive or negative. Further moregé,/5P)* #0 in a NESS. ropy production In are extensively |§Susse -t states
. ) two competing minimal principles for NESS: “Two resistors
There is no guaranteed convexity for thg near a NESS, R; andR, are in thermal contact with two heat reservoirs at
and there is no principle for minimal entropy productiont . t2 T 4T, C ting th istors i llel
[28,29. Luo, van den Broeck, and Nicolig25] have at- emperaturel, andf. Lonnecting the resistors in paraliel,

tempted to provide the two terms in E€(L7) with further vv.e.se’r;d a total currenit=1,+ |, through them. How does it
physical interpretation: they seem to be associated with thg'v'de' When a steady state is reazc hed, ;che rates gf produc-
macroscopic kinetics, which can be oscillatory or even challon O; heat and entropy aris= Rll it R2|2,’ &= Ril1/Ty
otic [19], and stochastic fluctuations around the macroscopic Rzl 2/ T2+ The entropy production is a minimum when the

kinetics, respectively. This is an interesting idea remaining tgurrent distributionR; 1, /T, =Rl /T, and the heat dissi-
be further investigated. pation is a minimum wheR;|; =R,l,.” We now show that

the issue here is subtle and more interesting than what is
discussed if5].

Since there is nothing special about electric current, let us
consider an overdamped particle in a force field with two
The mathematical theory for NESS we have adoptegossible channels in contact with different temperatdres
seems to suggest a mathematically attractive way to charaend T,. We have a mathematical model according to sto-

terize systems approaching to NESS. In this section, we athastic macromolecular mechanics

So far, we have only considered macromolecules in aque-
|OUs solution at constant temperature. Under such conditions,
&pe heat dissipation and entropy production differ trivially by
a constant temperatuiiein NESS[Eq. (7)]. We now gener-

VI. RELATIVE THERMODYNAMICS FOR SYSTEMS
WITHOUT DETAILED BALANCE

021111-4
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IP1(x,t)  kgTy ?P1(x,t)  F aPy(x.t)
T X
IP(x,1)  KkeTp ?Pa(x,t)  F aPp(x,t)
A ax? 7, X

whereP,(x,t) is the probability for the particle ikth chan-
nel at positionx at timet. In steady state, we have

kgTy dP1(x,t) F

- —Pi(x,t)=—3q, 19
S Pk = 0, 19
kgT, dPy(x,t) F (20)

— —Pa(X,t)=—=J>,
P VAL W i

with boundary conditions

J1+3,=J; P1(0)=P,(0); P1(L)=Py(L);

fOL[Pl(x)+ P,(x)]dx=1.

This mathematical problem can be completely solved. Th

solution is
7LJ 7LJd
_+ J—
» TTF ( F ot .
5Tl [l ) @Y
Y7F F
in which
(l-ey(l-e (1 1 _FL
B e_gz_e_gl g1 (] ' O-l_kBTl,
_ FL 29
UZ_kBTZI ( )

Two limiting cases are particularly interesting.df and
o,—, then we havey—oo, and

PHYSICAL REVIEW & 021111

Jz_ﬂ

— . 23
N @3

If, however, oy and o,—0, then we havey~(o;
+O'2)/(O'1_0'2)(1+0'10'2/12), a.nd

kz 771T2:%
Ji 7m,T1 Dy’

(24)

where nD=kgT according to Einstein’s relation. We note
that Egs.(23) and (24) are expected from minimal heat dis-
sipation rate and entropy production rate, respectively. For
large o, the convection dominates the diffusion, and hence, it
approaches to Kirchhoff's macroscopic law. For smalbn

the other hand, the process is diffusion dominant and close to
thermal equilibrium. Hence, it approaches to the Onsager’s
linear regime in which the principle of minimal entropy pro-
duction rate holdGlansdorff-Prigogine excess entropy crite-
rion). In general, however, neither of these are strictly valid,
as we have already shown in the previous sections. There-
fore, the minimal entropy production of Onsager and mini-
mal heat production of Helmholtz are limiting behaviors for

$ear reversible systems and highly irreversible systems, re-

spectively.

In summary, we have shown the consistency between the
mesoscopic theory of stochastic macromolecular mechanics
[1-4] and the macroscopic nonequilibrium thermodynamics
[6,8,12,13. Our results indicate that the nonequilibrium ther-
modynamics is applicable to molecular systems as small as a
single macromolecule in agueous solution. In return, our
theory also provides the nonequilibrium thermodynamics a
sound molecular basis. We expect this physical theory to
have a wide range of applications to cellular and molecular
biology and nanotechnology.
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