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Entropy production and excess entropy in a nonequilibrium steady-state of single macromolecule

Hong Qian*
Department of Applied Mathematics, University of Washington, Seattle, Washington 98195

and Institute of Theoretical Physics, University of California, Santa Barbara, California 93106
~Received 3 July 2001; published 25 January 2002!

Based on a recently developed formalism for mesoscopic stochastic dynamics of single macromolecules,
such as motor proteins, in aqueous solution, we demonstrate mathematically the principle of the nonequilib-
rium thermodynamics originated by the Brussels group. The key concepts of excess entropy and excess entropy
production, and their mathematical properties as well as physical interpretations, are discussed. The newly
developed stochastic macromolecular mechanics is consistent with the general theory of nonequilibrium ther-
modynamics far from equilibrium, and more importantly, it bridges the abstract theory with the current ex-
perimental and modeling work on molecular motors and other biological systems in nonequilibrium steady
state.
DOI: 10.1103/PhysRevE.65.021111 PACS number~s!: 05.40.2a, 05.70.Ln, 02.50.2r, 87.10.1e
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I. INTRODUCTION

In a previous paper@1#, we have proposed an axiomat
mesoscopic statistical thermodynamic formalism for sin
macromolecules in ambient fluid at constant temperat
Following the standard polymer theory@2#, a single macro-
molecule is represented by a set ofN ‘‘atoms’’ whose con-
figuration, X is described by a point in a 3N-dimensional
space. The dynamics of the atoms in the molecule is assu
to be overdamped in the fluid with hydrodynamic intera
tions represented by a positive matrixJ, the Oseen tensor
The force, both internal and external, is assumed to beF(X).
With this setting, a complete thermodynamics is develop
based on the stochastic dynamics of the macromoleculeXt ,
in terms of its Smoluchowski equation. The theory mak
connections with the classic work of Clausius, Gibbs, a
Onsager, and is applicable to both systems with and with
detailed balance. Hence a thermodynamics for a macrom
ecule such as motor proteins@3# in nonequilibrium steady-
state~NESS! emerges. We suggested that the mathemat
formalism provides a theoretical foundation for the futu
nanotechnology in which energy transduction and heat d
pation will be the essential problems, analogous to the c
sic thermodynamics for macroscopic engines and machi

In this paper, we use this explicit formalism we callsto-
chastic macromolecular mechanics@4# to explore the thorny
issues around the entropy~heat! production rate in system
without detailed balance, particularly near a NESS, rev
the principle of minimal entropy~heat! production @5# as
well as the concept of excess entropy and thermodyna
stability introduced by the Brussels school@6#. The goal is to
show the consistency between the two theories. The pre
paper provides the macroscopic thermodynamic theory w
a sound molecular basis. It shows the formalism to be su
ciently comprehensive and can be used in analyzing m
current, sometime abstract, issues in nonequilibrium ther
dynamics far from equilibrium with rigorous mathemati
and clear physical pictures. Furthermore, our analysis cle
distinguishes two different types of stabilities in a NESS, a
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suggests an alternative perspective for transient kinetics
proaching to NESS. In combination with the experimen
development in molecular motors and nanofabrication,
believe the present theory will further deepen our und
standing of nonequilibrium statistical mechanics and therm
dynamics.

Stochastic macromolecular mechanics is based on
overdamped Brownian dynamics of macromolecules
aqueous solution, and defines work, entropy, and thermo
namic force

JdXt5F~Xt!dt1GdBt . ~conformational dynamics!,
~1!

dWt5F~Xt!+dXt , ~work!, ~2!

S52kBE P~x,t !lnP~x,t !dx ~entropy!, ~3!

P5F~x!2kBT“P~x,t ! ~ thermodynamic force!, ~4!

in which GdBt characterizes the random collision betwe
the atoms and the fluid particles.P(x,t), the probability den-
sity for Xt5x at time t, is the solution to the Smoluchowsk
equation

]P

]t
5“•~ 1

2 A“P2J21F~x!P!,

~A5J21GGTJ2T52kBTJ21!. ~5!

See@1# for more details. While the first law of thermodynam
ics is built into the theory~Eq. 2! as the definition for hea
energy in NESS~similar to Carathe´odory @7#!, the important
results in@1# are~i! the introduction oflocal equilibrium; ~ii !
a proof of equilibrium among local free energy,~i.e.,
entropy-energy compensation!; and ~iii ! a derivation ofthe
equation for entropy balance@8,6,9#

T
dS

dt
5Tep2hd , ~6!
©2002 The American Physical Society11-1
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HONG QIAN PHYSICAL REVIEW E 65 021111
whereep andhd are entropy production and heat dissipati
rates, respectively, with explicit formulas

ep5
1

T E ~ 1
2 A“ ln P~x,t !2J21F~x!!TJ~ 1

2 A“ ln P~x,t !

2J21F~x!!P~x,t !dx, ~7!

and

hd5E F~P~x,t !J21F~x!2 1
2 A“P~x,t !!dx. ~8!

It is clear thatep in Eq. ~7! is always positive, and it equal
to zero if and only ifF,52“U(x), has a potential and th
probability distribution then is BoltzmannianP(x)
5Z21e2U(x)/kBT ~Z being the partition function!. This is the
second law of thermodynamics. In this paper, we are in
ested inF without potential. It then can be mathematica
shown that the stationary solution to Eqs.~1! and~5! is nec-
essarily a NESS with time irreversibility, andep.0 @10,11#.

II. RELATIVE ENTROPY AND SECOND DIFFERENTIAL
OF ENTROPY

Equation~6! is the starting point of all phenomenologic
treatment on nonequilibrium thermodynamics@12,8,6,13,14#.
Equations~1!–~4! augment this equation with a mesoscop
picture of macromolecular Brownian motion. They also p
vide Eq.~6! with a mathematical foundation in terms of th
stochastic dynamics. Note thatep and hd are diS/dt and
deS/dt in @8,6#. We useep (hd) instead of the traditiona
notationṠi (Ṡe) for the entropy production~heat dissipation!
rate to emphasize that it is a source~sink! term, not a time
derivative.

The uniqueness of the NESS solution,P* (x), to the
Fokker-Planck equation~5! without detailed balance can b
demonstrated by introducing a well-known global Lyapun
function discovered by Schlo¨gl @15#

C@P~x,t !#5kBE P~x,t !lnS P~x,t !

P* ~x! Ddx>0. ~9!

As the Lyapunov function, its time derivative@16#

dC

dt
5kBE ]P

]t
lnS P

P* Ddx

52kB
2TE PF“ lnS P

P* DJ21
“ lnS P

P* D Gdx<0.

~10!

It is an agonizing fact thatC, being such an important math
ematical function, has not found a natural physical mean
Recently@17,18#, it has been established that for Eq.~5! with
detailed balance,C is in fact the Helmholtz free energy, als
known as exergy@17#.

Near a NESS, it is known thatC is equivalent to the
second differential of entropyS with respect toP @6,9#
02111
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-
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d2S52kBFd2E P~x! lnP~x!dxG
P5P*

52kBE ~dP!2

P*
dx,

~11!

and22C5

22kBE P lnS P

P* Ddx52kBE ~dP!2

P*
dx1oF S dP

P* D 2G ,
~12!

wheredP5P2P* . Hence, one can show thatd2S ~<0! is a
local Lyapunov functionnear a NESS

d

dt
d2S52kB

d

dt E ~P2P* !2

P*
dx

522kBH E S P

P* D J* •“S P

P* Ddx

2kBTE P* F“S P

P* DJ21
“S P

P* D GdxJ
52kB

2TE P* F“S P

P* DJ21
“S P

P* D Gdx>0,

where2“•J(x,t)5]P(x,x)/]t andJ5P(x,t)J21P(x,t).
In terms of J and P, Eq. ~7! can be rewritten asep
5(1/T)*P•J dx.

III. EXCESS ENTROPY PRODUCTION RATE

By ‘‘excess entropy,’’ we simply mean the functiona
given in Eq.~11! @6#

d2S@P#52kBE @P~x,t !2P* ~x!#2

P* ~x!
dx.

In parallel to the equation for entropy balance, one has
equation for excess entropy balance

T
d

dt
d2S5Td2ep2d2hd ~13!

in which the excess entropy production rate

Td2ep5E d2P•J dx12E dP•dJ dx1E P•d2J dx.

~14!

The last term in Eq.~14! equals zero sinceJ is a linear
function of P. The first term, however, is not zero but is o
the order ofo@d P)2]:
1-2
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E d2P•J dx

5E @P~P!22P~P* !1P~2P* 2P!#J dx

5E 2~P2P* !•J dx2E @P~P!2P~2P* 2P!#J dx

5E 2~P2P* !~J2J* !dx1kBT

3E @“ ln P2“ ln~2P* 2P!#J dx

522T
dC

dt
1kBT

d

dt

3E @P ln P1~2P* 2P!ln~2P* 2P!#dx,

in which

T
dC

dt
52E P~P2P* !J21~P2P* !dx

52E ~P2P* !•J dx1E P~P2P* !J21P* dx

52E ~P2P* !•~J2J* !dx2kBT

3E S P

P* D“ lnS P

P* D •J* dx

52E ~P2P* !•~J2J* !dx.

Therefore,

d2ep52kB

d

dt F4E P lnS P

P* Ddx2E P ln P dx

2E ~2P* 2P!ln~2P* 2P!dxG
52kB

d

dt H E ~dP!2

P*
dx1oXS dP

P* D 2CJ .

Neglecting higher-order terms, thed2S andd2ep are simply
related near a NESS

d2ep5
d

dt
d2S, ~15!

the excess entropy production rate is the time derivative
the excess entropy, which in turn is a local Lyapunov fun
tion. Near a NESS,d2S<0, andd2ep>0. This is an explicit
demonstration of the theory on thermodynamic stability,
troduced by the Brussels group@6#, of a single NESS mac
romolecule in aqueous solution.
02111
f
-

-

IV. THE MEANING OF STABILITY

Some remarks on the meaning of stability of a NESS is
order. Within the framework of Brownian dynamics at co
stant temperature in aqueous solution, the stability gua
teed by Eqs.~9! and ~10! is the stochastic probability distri
bution in NESS. When applying the same mathemati
theory for single macromolecules in aqueous solution t
chemical reaction, sayX1Y
2X, one considers the sto
chastic chemical reaction in terms of a birth-and-death p
cess@14#. The birth-and-death process is a random walk
the two-dimensionalXY plan with probability distribution
P(nX ,nY ,t), and its dynamics is mathematically equivale
to a Brownian motion with nonconstantJ in Eq. ~5! @19#.
We shall call this mesoscopic stability.

There is another type of stability, which is associated w
the macroscopic behavior of the same chemical reaction
can be shown that for a system with large number of m
eculesX andY, the law of mass-action emerges and a m
roscopic chemical kinetics arise@19#. According to this pic-
ture, a unimodal stationary distributionP* (nX ,nY)
corresponds to afixed pointin the deterministic, macroscopi
chemical kinetics. However, the distribution can bifurca
the peak ofP* (nX ,nY) becomes a minimum, and the hig
probability is associated with a ring around the minimu
@19#. This stochastic picture corresponds to a macrosco
limit cycle. In the macroscopic kinetics, the fixed point
now unstable, and the chemical kinetics is oscillatory. Ho
ever, the stochastic distributionP* (nX ,nY) still enjoys its
asymptotic stability, as guaranteed by the Lyapunov fu
tions C and d2S @15#. This discussion on the meaning o
stability sheds some light on the qualm regarding
Lyapunov functiond2S @20–24#. It is clear that the centra
issue concerned by the pioneers is whether thed2S can also
be used as a Lyapunov function for the macroscopic, de
ministic kinetics. As pointed out in@25#, the mathematical
problem here is quite delicate. It involves the order in taki
infinite-time limit ~stationarity! and infinite-size~thermody-
namic! limit. In the context of single macromolecules i
aqueous solution, the size of the molecular system is me
scopic; hence, the present theory does not involve the t
modynamic limit. Finally, it is interesting to point out tha
while the stochastic system enjoys mesoscopic stability,
underlying chemical reaction can be itself unstable. Suc
generic behavior of a nonequilibrium steady state is a
known as self-organized~asymptotically stable! criticality
@26#. In a nonequilibrium steady state, the stationary is s
tained by circular balance rather than detailed balance,
the size of the kinetic cycles ranges from small to as large
the entire system@27,10#.

V. ENTROPY PRODUCTION RATE AS A LYAPUNOV
FUNCTION

It is tempting to draw further physical insights from E
~15!. We note

ep@P#5ep@P* #1E S dep

dP D *
dP dx1

1

2
d2ep1¯ ~16!
1-3
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HONG QIAN PHYSICAL REVIEW E 65 021111
in which

S dep

dP D *
5

1

T
$2P* J21P* 12FJ21P*

12kBT“•~J21P* !%.

For a system with detailed balance, a stochastic dynam
approaching to its equilibrium has the following propertie
theep is always positive, and it equals zero when the syst
reaches the equilibrium. In Eq.~16!, the ep50 and
dep /dP* 50 at an equilibrium. Therefore, near the equili
rium the ep@P# is a convex function, andep approaches to
zero monotonically without oscillation, an essential featu
of any relaxation to an equilibrium. This is related to Onsa
er’s reciprocal relation and the fact that the eigenvalue pr
lem near an equilibrium is necessarily symmetric@11#. In
mathematical term,ep>0 and in the linear neighborhood o
the equilibrium

d

dt
ep522kBE ~“•J!2P21dx2~1/T!

3E ~JTJJ!~“•J!P22dx ~17!

'22kBE ~“•J!2P21dx<0.

The second term on the right-hand side of Eq.~17! is third
order in uJu which equals zero in an equilibrium. Therefor
combining Eqs.~16! and ~17!, entropy production rate is
also a local Lyapunov function for systems with detailed b
ance.

How doesep change with time in a stochastic dynami
approaching to a NESS for systems without detailed b
ance? This has been a nagging question in the histor
nonequilibrium thermodynamics@5#. In a NESS away from
an equilibrium, the stationary flux“•J50 but JÞ0 and P
Þ0. Hence, the second term on the right-hand side of
~17!, ;O(“•J), is not smaller than the first terms
;O@(“•J)2# near the NESS. Since there is no definiten
in the sign of“•J near NESS, (d/dt)ep can either be posi-
tive or negative. Further more, (dep /dP)* Þ0 in a NESS.
There is no guaranteed convexity for theep near a NESS,
and there is no principle for minimal entropy productio
@28,29#. Luo, van den Broeck, and Nicolis@25# have at-
tempted to provide the two terms in Eq.~17! with further
physical interpretation: they seem to be associated with
macroscopic kinetics, which can be oscillatory or even c
otic @19#, and stochastic fluctuations around the macrosco
kinetics, respectively. This is an interesting idea remaining
be further investigated.

VI. RELATIVE THERMODYNAMICS FOR SYSTEMS
WITHOUT DETAILED BALANCE

The mathematical theory for NESS we have adop
seems to suggest a mathematically attractive way to cha
terize systems approaching to NESS. In this section, we
02111
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tempt to provide a basic idea of this approach. Whether s
a perspective is beneficial, either experimentally or theor
cally, remains to be seen.

We argue that a system, without detailed balance and
its transient process approaching to its unique NESS, sh
always be viewed in relative with respect to the NESS. Mo
specifically, all the physical quantities expressed indiffer-
encewith respect to the NESS counterparts enjoy a grea
mathematical simplicity. We will useDP5P(x,t)2P* (x)
to denote the relative thermodynamic force, and DJ
5J(x,t)2J* (x) to denote therelative flux. Then,

E DP•DJ dx52T
dC

dt
>0. ~18!

The relative thermodynamic force DP52kBT
3“ ln@P(x,t)/P* (x)# has a potentialkBT ln@P(x,t)/P* (x)#
which is the mesoscopic~fluctuating! local entropy@1# in its
relative form: DY52kB ln@P(x,t)/P* (x)#. The relative en-
tropy then is the expectation of DY:C5
2*P(x,t)DY(x,t)dx.

We shall denote the quantity in Eq.~18!, which equals to
(T/2)d2ep up to the second order, byd IIep . This functional
is locally convex near a NESS

d

dP
d IIep50, d2~d IIep!>0.

VII. FROM MINIMAL HEAT DISSIPATION TO MINIMAL
ENTROPY PRODUCTION

So far, we have only considered macromolecules in aq
ous solution at constant temperature. Under such conditi
the heat dissipation and entropy production differ trivially
a constant temperatureT in NESS@Eq. ~7!#. We now gener-
alize our formalism to some problems which involves tw
different temperatures. Under this condition, the entropy p
duction and heat dissipation rates are no longer simply
lated. In a review article on minimal principle in NESS@5#,
minimal heat production~Kirchhoff’s law! and minimal en-
tropy production in NESS are extensively discussed. It sta
two competing minimal principles for NESS: ‘‘Two resisto
R1 andR2 are in thermal contact with two heat reservoirs
temperatureT1 andT2 . Connecting the resistors in paralle
we send a total currentI 5I 11I 2 through them. How does i
divide? When a steady state is reached, the rates of pro
tion of heat and entropy arehd5R1I 1

21R2I 2
2, ep5R1I 1

2/T1

1R2I 2
2/T2 . The entropy production is a minimum when th

current distributionR1I 1 /T15R2I 2 /T2 , and the heat dissi-
pation is a minimum whenR1I 15R2I 2 .’’ We now show that
the issue here is subtle and more interesting than wha
discussed in@5#.

Since there is nothing special about electric current, le
consider an overdamped particle in a force field with tw
possible channels in contact with different temperaturesT1
and T2 . We have a mathematical model according to s
chastic macromolecular mechanics
1-4
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]P1~x,t !

]t
5

kBT1

h1

]2P1~x,t !

]x2 2
F

h1

]P1~x,t !

]x
,

]P2~x,t !

]t
5

kBT2

h2

]2P2~x,t !

]x2 2
F

h2

]P2~x,t !

]x
,

wherePk(x,t) is the probability for the particle inkth chan-
nel at positionx at time t. In steady state, we have

kBT1

h1

]P1~x,t !

]x
2

F

h1
P1~x,t !52J1 , ~19!

kBT2

h2

]P2~x,t !

]x
2

F

h2
P2~x,t !52J2 , ~20!

with boundary conditions

J11J25J; P1~0!5P2~0!; P1~L !5P2~L !;

E
0

L

@P1~x!1P2~x!#dx51.

This mathematical problem can be completely solved. T
solution is

J2

J1
5

g
h1LJ

F
1S h1LJ

F
21D

g
h2LJ

F
2S h2LJ

F
21D , ~21!

in which

g5
~12e2s1!~12e2s2!

e2s22e2s1 S 1

s1
1

1

s2
D , s15

FL

kBT1
;

s25
FL

kBT2
. ~22!

Two limiting cases are particularly interesting. Ifs1 and
s2→`, then we haveg→`, and
s

f

-

02111
e

J2

J1
5

h1

h2
. ~23!

If, however, s1 and s2→0, then we have g'(s1
1s2)/(s12s2)(11s1s2/12), and

J2

J1
5

h1T2

h2T1
5

D2

D1
, ~24!

where hD5kBT according to Einstein’s relation. We not
that Eqs.~23! and ~24! are expected from minimal heat dis
sipation rate and entropy production rate, respectively.
larges, the convection dominates the diffusion, and hence
approaches to Kirchhoff’s macroscopic law. For smalls, on
the other hand, the process is diffusion dominant and clos
thermal equilibrium. Hence, it approaches to the Onsag
linear regime in which the principle of minimal entropy pro
duction rate hold~Glansdorff-Prigogine excess entropy crit
rion!. In general, however, neither of these are strictly va
as we have already shown in the previous sections. Th
fore, the minimal entropy production of Onsager and mi
mal heat production of Helmholtz are limiting behaviors f
near reversible systems and highly irreversible systems,
spectively.

In summary, we have shown the consistency between
mesoscopic theory of stochastic macromolecular mecha
@1–4# and the macroscopic nonequilibrium thermodynam
@6,8,12,13#. Our results indicate that the nonequilibrium the
modynamics is applicable to molecular systems as small
single macromolecule in aqueous solution. In return,
theory also provides the nonequilibrium thermodynamic
sound molecular basis. We expect this physical theory
have a wide range of applications to cellular and molecu
biology and nanotechnology.
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@3# F. Jülicher, A. Ajdari, and J. Prost, Rev. Mod. Phys.69, 1269

~1997!; H. Qian, Phys. Rev. Lett.81, 3063 ~1998!; J. Math.
Chem.27, 219 ~2000!.

@4# H. Qian, e-print http://xxx.lanl.gov/abs/physics/0007017.
@5# E. T. Jaynes, Annu. Rev. Phys. Chem.31, 579 ~1980!.
@6# P. Glansdorff and I. Prigogine,Thermodynamic Theory o

Structure, Stability, and Fluctuations~Wiley Interscience,
New York, 1971!.

@7# C. Carathe´odory, Math. Ann.67, 355 ~1909!.
@8# S. R. de Groot and P. Mazur,Non-equilibrium Thermodynam

ics ~North Holland, Amsterdam, 1962!.
@9# J. Schnakenberg, Rev. Mod. Phys.48, 571 ~1976!.
@10# M.-P. Qian, M. Qian, and G. L. Gong, Contemp. Math.118,
255 ~1991!.

@11# H. Qian, Proc. R. Soc. London, Ser. A457, 1645~2001!.
@12# S. R. de Groot,Thermodynamics of Irreversible Process

~North-Holland, Amsterdam, 1961!.
@13# G. Nicolis and I. Prigogine,Self-Organization in Nonequilib-

rium Systems~Wiley Interscience, New York, 1977!.
@14# J. Keizer,Statistical Thermodynamics of Nonequilibrium Pr

cesses~Springer-Verlag, New York, 1987!.
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